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Boundary conditions at a liquidlair interface 
in lubrication flows 
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Research Laboratories, Eastman Kodak Company, Rochester, New York 14650, U.S.A. 

(Received 23 February 1981 and in revised form 26 October 1981) 

A difficulty in applying the lubrication approximation to  flows where a liquidlair 
interface forms lies in supplying boundary conditions at  the point of formation of the 
interface that are consistent with the lubrication approximation. The method of 
matched asymptotic expansions is applied to  the flow between partially submerged, 
counter-rotating rollers, a representative problem from this class, and the lubrication 
approximation is found t o  generate the first term of an outer expansion of the problem 
solution. The first term of an inner expansion describes the two-dimensional flow in 
the vicinity of the interface, and approximate results are found by the finite-element 
method. Matching between the inner and outer solutions determines boundary 
conditions on the pressure and the pressure gradient a t  the point of formation of the 
interface which allow the solution to  the outer, lubrication flow to be completed. 

1. Introduction 
There are important applications of the lubrication or Reynolds approximation to 

flows where a liquidlair interface forms. Cavity formation in a journal bearing is an 
application of obvious interest. A second notable application is to the various roll- 
coating devices that are used industrially to form thin liquid films. 

As explained, for instance, by Taylor (1963), a difficulty in applying the lubrication 
approximation to this class of problems lies in providing boundary conditions where 
the liquid/air interface forms. The lubrication approximation is useful up to  the 
meniscus but not in the immediate vicinity of the meniscus, where the flow is essentially 
two-dimensional. 

Taylor argued that a local analysis for the neighbourhood of the meniscus would 
resolve the difficulties, but, in view of the apparent intractability of the applicable 
equations, he resorted instead to special experiments to  provide the information he 
needed. Evidently only Pitts & Greiller (1961) and Coyne & Elrod (1970) have 
attempted an approximate solution near the meniscus. Both of their approaches 
involve major simplifying assumptions to  make the problem a t  all tractable. Others 
have postulated boundary conditions without attempting formal justification. Savage 
(1977) has critically reviewed some of these proposals. The difficulty with using these 
boundary conditions lies in identifying the circumstances under which they are valid. 

A formal approach is taken here, in the context of the flow between counter- 
rotating cylinders, which was first studied by Pitts & Greiller (1961). It is first shown 
that the lubrication approximation arises in the limit as the parameter 6, a measure 
of the relative slope between the roller surfaces, tends to  zero. The fact that  these 
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limiting equations are not applicable throughout the flow field suggests that the 
parameter limit is singular. The method of matched asymptotic expansions (Van 
Dyke 1964) is then applicable, and the lubrication approximation is considered to 
determine the first term of an  outer expansion of the problem solution. The co- 
ordinates are stretched in the neighbourhood of the meniscus, and a second limiting 
process as 6-t 0 is considered that yields the equations which determine the first term 
of an inner expansion. The inner problem proves to be intractable, and so i t  is solved 
numerically by the finite-element method. Routine matching between the first terms 
of the outer and inner expansions then produces the boundary conditions that enable 
the outer solution to  be completed. 

The use of the method of matched asymptotic expansions leads directly to  the 
boundary conditions for the portion of the flow described by the lubrication approxi- 
mation. The procedure described is applicable to  all the problems in this class, and 
not just to the particular example used here for illustration. 

2. Description of the problem 
Two long cylinders of radius R are immersed to their centres in a pool of liquid 

(figure 1) .  The axes of the cylinders are parallel, and the minimum gap between the 
cylinders is 2H0. An (X, Y) Cartesian co-ordinate system is oriented as shown in the 
figure. The cylinders rotate in opposite directions with peripheral speed S, with the 
effect that  a liquid film of uniform thickness is metered onto the surface of each 
cylinder. The important question of the stability of this flow is not considered here, 
and the reader may refer to the works of Pitts & Greiller (1961), Mill & South (1967), 
Savage (1977) and Greener et al. (1980). 

The liquid has viscosity p, density p and surface tension u. The pressure is denoted 
by P, and the X- and Y-components of the velocity by U and V respectively. The 
Y-co-ordinate of a cylinder surface is given by F ( X ) ,  where 

The dimensionless parameters for this problem are the Reynolds number r = pSHo/,u, 
the capillary number c = pS/u, and what will turn out to  be a measure of the relative 
slope between the cylinder surfaces 6 = (Ho/R)&.  

I n  the following analysis 6 is assumed to be a small parameter. This is not the case 
in figure 1, where, for clarity, dimensions relative to the cylinder radius have been 
greatly exaggerated. If the figure were drawn to the scale a t  which the analysis applies, 
the cylinders would appear to  be touching. Moreover, the thin liquid film on the 
surface of each cylinder would not be visible, nor would the meniscus, which is very 
close to the nip. 

F = Ho+R-(R2-X2)8  (1x1 < R).  (2.1) 

3. The outer problem 
Consider first the portion of the flow in the vicinity of the nip. Scale factors appro- 

priate for this region are well known (Pitts & Greiller 1961) and lead to  the following 
dimensionless variables : 

x = 6X/Ho,  y = Y/Ho, f = F/Ho;  ( 3 . l a ,  b ,  c)  

u = U / S ,  v = V/SS,  p = 6HoP/pS. ( 3 . 1 4  e,f 1 
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FIGURE 1. Partially submerged, counter-rotating cylinders. 

An important point to note is that the scale factor for the X-co-ordinate is much 
larger than that for the Y-co-ordinate. As a result the streamlines in this region turn 
out to be nearly parallel. 

The governing equations written in terms of these dimensionless variables are as 
follows: 

( 3 . 2 a )  

(3 .2b )  

ux+vy = 0,  ( 3 . 2 ~ )  

u = (1+8y;)-t, v =fx(l+6zf;)-t (y If), (3 .2d ,  e )  

r8[uux + wu,] = -px + uyy + 62uxx, 

rJ3[uwX + ww,] = -py  + 62w,, + Pwxx, 

u, = 0, v = 0 ( y  = O ) ,  ( 3 . 2 f ,  9 )  
f = 1 + 8-2 - 8-2( 1 - 82X2)k (3 .2h)  

Equations ( 3 . 2 a , b )  are the components of the momentum equation, and ( 3 . 2 ~ )  is the 
continuity equation. Boundary conditions (3 .2d ,  e )  state that liquid does not slip a t  
the cylinder surfaces. The other two boundary conditions (3 .2 f ,  9 )  express the 
symmetry of the flow about the x-axis. Finally, (3 .2h)  is derived from (2 .1 ) ,  and gives 
the y-co-ordinate of a cylinder surface. 

Consider the formal limit of equations (3 .2 )  as 6-t 0 with x and y fixed. The dependent 
variables u, v, p and f approach limits that, for the sake of simplicity and because 
higher-order terms will not be calculated, will be designated by the same notation : 

(3 .3a ,  b )  o =  - p  x + u  yy, 0 = -P Y’ 
ux 4- v?/ = 0, (3 .34 

uy = 0,  v = 0 ( y  = O ) ,  (3.3fj  9 )  

u= 1, v=fx (y=  f ) ,  ( 3 . 3 d ,  e )  

f = l++x2. (3 .3h)  

These equations are, in fact, the lubrication approximation to the complete set of 
equations. Here, they also determine the first term of an outer expansion of the 
problem solution. They are expected to be valid for small values of 6 provided that 
r < 8-1 and x -g 6-4. 

From (3 .3  b )  p is a function only of x, and consequently expressions for u, v and px 
follow readily from (3 .3 ) :  

( 3 . 4 ~ )  

(3 .4b )  
u = 1 - + P X ( f  - y2), 

2, = BPxx(f 2Y - +Y3) + P x f f x  Y ,  
Px = 3 ( f - W f 3 .  (3 .4c )  
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I n  (3.4) the unknown constant h is the flow rate between the centreline and a 
cylinder surface made dimensionless with SH,. A change of independent variable 
transforms the expression for the pressure gradient a t  ( 3 . 4 ~ )  into a form that is readily 
integrated: 

t a n 0  = x/J2 (101 < an), (3.5) 

p e / 3  4 2  = C O S ~  8 - h c0s4 0. (3.6) 

The outer solution is not complete until three constants have been determined. The 
flow rate h is unknown, as is m, the value of x where the meniscus forms and the outer 
solution ceases to  be valid. The integration of (3.6) introduces a third constant. Three 
boundary conditions are needed to determine these constants. 

One boundary condition can be arrived a t  quite readily: 

p + o  @+-a). (3.7) 

To obtain this condition, the variables must be rescaled for the pool of liquid. Because 
the characteristic length in this region of the flow is R, the pressure in the pool will 
scale with ,uS/R. The pressure near the nip, on the other hand, scales with ,uS/H,S 
(see (3.1f)) .  Thus the pressure in the pool, compared with the pressure near the nip, 
is of order 63, and a formal application of the method of matched asymptotic expansions 
to  the two regions will lead to  (3 .7)  as a matching condition. 

The remaining two boundary conditions are determined in the following sections by 
rescaling the variables for the neighbourhood of the meniscus, calculating the first 
term of an inner expansion, and matching the first terms in the inner and outer 
expansions. 

4. The inner problem 
I n  the outer region the streamlines are nearly parallel, leading to the simplified 

equations (3.3).  Near the meniscus, however, the flow is strictly two-dimensional, 
and those equations are not adequate. 

Dimensionless variables that are appropriate for the neighhourhood of the meniscus 
are as follows: 

[ = (X -M) /Ho ,  y = Y/H,, h = H/H,, f = F/H,, (4.1 a, b, c, d )  

Ti = U / S ,  V = V / S ,  ji = PHo/pS. 

H(X) is the Y-co-ordinate of the meniscus, and M = Horv,/S is the value of X for the 
point on the meniscus that lies on the X-axis. Note from (4.1 a) that  the X-co-ordinate 
is shifted so that the origin of the new co-ordinate system is the leading point of bhe 
meniscus. The relationships between the inner and outer variables are 

c = (x-m)/S, j = f ,  (4 .2a,  b )  

u = u, v = sv, ji = p / s .  ( 4 . 2 ~ )  d, e )  

It is clear from (4 .2a)  that  the x-co-ordinate is being st,retched in the vicinity of the 
meniscus. 



Boundary conddtions at a liquidlair interface i l l  

I n  terms of the inner variables the governing equations are 

(4.3J.l 

(4.3k) 

g = d-2{[s2(m+S&)2+(1+S2-S2h)2]3- l}, (4.31) 

5 = (1  +A)-*, v = f5( 1 +f$+ (y = $), (4.3m, n) 

(4.30,P) 

(4.39) 

- 
uy = 0, (y = 0, 6 < O ) ,  

f = 1 + 8-2- 6-2[1- P(m + S6)2]3. 

v = 0 

Equations (4.3a, b )  are the components of the momentum equation, and ( 4 . 3 ~ )  is the 
continuity equation. Equation (4.3d) states that the normal stress exerted by the 
liquid on the free boundary is balanced by the action of surface tension in the curved 
meniscus, and (4.3e) states that the free boundary supports no tangential stress. The 
fact that no liquid flows across the free boundary is expressed by (4.3f). Boundary 
conditions (4.3g, h) result from the symmetry of the meniscus about the 6-axis, and 
(4.3i)  states that the free meniscus is parallel to the cylinder surface far downstream. 
The liquid film is in rigid-body motion far downstream (4.3j, k), and the liquid does not 
slip a t  the cylinder surface (4 .3m)n).  In  (4.33')-(4.31), g is the thickness of the liquid 
layer along the normal to the cylinder surface, and x is a radial co-ordinate measured 
from the cylinder surface. The fact that the flow is symmetric about the 6-axis leads 
to boundary conditions ( 4 . 3 0 , ~ ) .  Equation (4.3q) gives f, the y-co-ordinate of the 
cylinder surface. 

The equations that determine the first terms in the inner expansion are found by 
taking the limit of (4.3) as &- to  with 5 and y fixed. The limits of the dependent 
variables G, V, jj, h,fand g will be designated by the same symbols, again for simplicity : 

r(ZZg+3G,) = -j35+G,,+Ug,, (4.4a) 

u5+;ii, = 0, (4.4c) 

r(G ;ij, + 55,) = - FU + Guy + Z5,, (4.4b) 
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(4 .44 

(Uu+vc)  (1 -hi)-4hgG5 = 0 (y = h, 6 > 0 1 ,  (4.4e) 

(4.4f) 

(4.4% h)  

(4 .44  

(4.4j, k) 
U = l ,  v = o  ( y = J ) ,  (4.4Z, rn) 

J =  1+$m2. (4.4P) 

i ;ii = h,E 

h5+co, h+O ( E + O ) ,  

hg+0 (E+W), 

U + 1 ,  @ + O  (E-tco, h < y <f), 

uu = 0,  v = 0 (y = 0, 5 < O ) ,  (4.4n, 0 )  

Equations (4.4) are only valid very close to  the point of formation of the meniscus 
(S< < m). They are nearly as complex as (4.3). The only simplification of any import- 
ance to  have taken place is that  in the limit the cylinder surface parallels the centre- 
line a t  a distancefgiven by ( 4 . 4 ~ ) .  This is because, when S is small, the meniscus 
forms so close to  the nip that the slope of the cylinder surface is small ( fg = Sm < St). 
Thm, over the small region of the inner flow, the distance of the cylinder surface from 
the centreline changes very little (Sm< < m2). 

The problem (4.4) is complete once boundary conditions are specified as [-+ -co. 
These folIow when the first terms in the inner and outer expansions are matched by the 
usual procedure (Van Dyke 1964). It is found that the streamlines in the inner region 
must become parallel far upstream for matching with the outer flow to be possible: 

U-t l -~ ( l -q ) [ l - (y /S )2 ] ,  v + o  (<+ -00, 0 < y  <f). 
(4.4q, r )  

Here the constant q is an unknown, which is determined as part of the solution to the 
inner problem. It may be interpreted as the flow rate between the centreline and the 
cylinder surface made dimensionless with XH,f, where f is given at (4.4p), or as the 
ratio of the final film thickness to  f. Usually, only two boundary conditions can be 
associated with the ends of the free boundary, but three conditions (4.4g-i) are posed 
here. The problem has not been over-specified, however, because the third boundary 
condition enables q to  be determined. 

The matching of the first terms of the inner and outer expansions also provides the 
two boundary conditions that enable the first term of the outer solution to be deter- 
mined completely : 

p = 0, px = 3(1-q)/f2 (X = m ) .  (4.5a, b )  

Boundary condition (4.5 a), that the pressure in the outer region is zero a t  the meniscus, 
results because the pressure has been scaled with viscous forces in both the inner and 
outer regions. The scale factor for the pressure in the outer region (3.1 f )  is much larger 
than the scale factor in the inner region because of the lubrioation effect. As a result, 
pressure changes which occur near the meniscus are relatively unimportant. 

Boundary condition (4.5b) states that  the pressure gradient in the outer flow, 
evaluated a t  the meniscus, must equal the constant pressure gradient of the inner flow 
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upstream of the meniscus. Equivalently, the parabolic velocity profile of the outer flow 
(3.4a), evaluated at the meniscus, must be identical to the parabolic velocity profile 
(4.4q) to which the inner flow tends upstream of the meniscus, Evaluating the pressure 
gradient in the outer region, (3.4c), at  x = m and substituting into (4.5b) gives 

h = qf (x = m). (4.5 c) 

This alternative form of the second boundary condition states that  the flow rates in 
the inner and outer regions are equal. Until q is determined as part of the solution of 
the inner problem (4.4), however, (4.5 b, c) are not useful. 

5. Numerical solution of the inner problem 
The inner problem (4.4) is a free boundary problem with the flow field determined by 

the complete momentum equation. As such, it is intractable, and so a numerical 
solution by a finite-element method was obtained. A detailed description of the 
technique used has appeared elsewhere (Ruschak 1980), and consequently only a few 
introductory remarks will be made here. 

An approximate solution to a weak form of the steady Navier-Stokes and con- 
tinuity equations is constructed by the finite-element method. Working with a weak 
form of the equations permits the stress boundary conditions on the free boundary to 
be imposed as natural boundary conditions, a major simplification. 

The finite element used is a triangle with nodes a t  the vertices and midpoints of the 
sides. The latter nodes are interconnected to  form four subtriangles. The approxi- 
mating function for the pressure is constant in an element, and the components of 
velocity vary linearly in each subtriangle. Thus the pressure is approximated by a 
piecewise-constant function, and each velocity component by a piecewise-linear 
function. The free boundary is also approximated by a piecewise-linear function. 

The substitution of the approximating functions for the pressure, velocity com- 
ponents, and the free boundary into the weak form of the momentum and continuity 
equations gives rise to a set of nonlinear algebraic equations. The algebraic equations 
are solved simultaneously by a frontal-elimination technique combined with full 
Newton’s iteration. The unknown flow rate q in boundary condition (4.4q) is treated 
just as any other unknown. No additional iteration loops are required to  determine q. 

Four finite-element grids were constructed for the present study. The only change 
made in the problem (4.4) is to multiply the characteristic length scale H,, byf(4.413) 
so that the distance between the cylinder surface and the centreline is unity. The 
upstream portion of one of the grids is shown in figure 2 ,  and table 1 summarizes the 
prominent features of the grids. 

All the grids begin one unit upstream of the tip of the meniscus. Lengthening the 
grids in the upstream direction does not appreciably change the results. For example, 
when r = 0 and c = 0.2, grid 1 gives a value for q of 0.217. A grid of comparable 
density that extends 5 units upstream of the meniscus gives q = 0.216. This weak 
upstream influence of the meniscus can be anticipated from the exact, creeping-flow 
solution of Richardson (1970) for liquid exiting from a slot. The upstream influence 
becomes even weaker as the Reynolds number is increased. 

On the other hand, as will be seen at (5.3), the necessary length of a grid down- 
stream of the meniscus is proportional to the Reynolds number. It is for this reason 
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Elf 
FIGURE 2. Portion of a finite-element grid near the tip of the meniscus. 

The subtriangles of each element are not shown. 

Grid Nodes Elements Unknowns Length 

1 329 136 839 5 
2 419 172 1073 9 
3 449 192 1147 18 
4 415 180 1053 30 

TABLE 1. Specifications for the finite-element grids 

1 .o I I 

0.0 0.0 1 L 1 0.1 1 .o 10 

C 

FIGURE 3. Dimensionless flow rate versus the capillary number. , present results ; A, Coyne & 
Elrod (1970) for a closely related problem; __ , asymptotic result (5.1) for small capillary 
number. 

that the grids differ in length. Systematic grid refinement was carried out only for 
the case r = 0 and c = 0.2. Based on the findings, the element densities used are 
believed to be more than adequate. 

The most useful prediction is q, the ratio of the final film thickness to the distance 



Boundary conditions at a liquidlair interface 115 

0.5 

0.4 

0.3 

4 

0.2 

0.1 

0 

-L 

I I I I I 

0 100 200 300 400 

rT 
FIGURE 4. Dimensionless flow rate versus the Reynolds number. 

0, c = 1000; a, 1 ;  0, 0.2; 0 ,  0.075. 

between the centreline and the cylinder surface. In figure 3 q is plotted against the 
capillary number for a Reynolds number of zero, as is often effectively the case. The 
thickness ratio increases monotonically with the capillary number, approaching an 
upper bound of about 0.41 as the capillary number tends to infinity. 

An asymptotic analysis like those performed by Landau & Levich (1942), Bretherton 
(1961), Ruschak & Scriven (1977), and Ruschak (1977) gives q when the capillary 
number is small: 

q N 1.34~3 ( c + O ) .  (5.1) 

Figure 3, however, shows that this result is of little use for capillary numbers above 
0.01. This is expected, however, because a comparison (Ruschak 1974) of (5.1) with 
Morey’s (1940) experimental data at  low capillary number shows good agreement 
only for capillary numbers less than about 0.01. 

An approximate result which is somewhat more useful is 

q = 0.54~4 (0.01 < c < 0.1). (5 .2 )  

Fairbrother & Stubbs (1935) first suggested this form, but with a coefficient of 0.5, 
based on their experimental results for the thickness of a liquid film deposited in a 
capillary tube. Taylor (1963) found that his experimental result,s for a flow geometry 
similar to that considered here fit the form (5.2), but with a coefficient of 0.43. 

Figure 3 also shows the results of the approximate analysis of Coyne & Elrod 
(1970). The geometry that they considered is very close to that considered here, but 
the rather good agreement between their results and the present results nevertheless 
comes as something of a surprise. In constructing their approximate solution, Coyne 
& Elrod do not even require that the momentum equation be satisfied in some average 
sense through the liquid, much less at  each point. 

The thickness ratio was also determined, for several fixed values of the capillary 
number, as a function of the Reynolds number. Some of these results are shown in 
figure 4. Perhaps the most noticeable feature of these results is the rather weak 
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FIGURE 5 .  Free-boundary profiles a t  zero Reynolds number. 

---, c = 0.015;--, 0.2; * * a ' ,  1000. 

dependence of q on the Reynolds number over the range of the calculations. Another 
interesting feature of the curves for the lower capillary numbers is that q a t  first 
decreases with increasing Reynolds number before beginning a slow but steady 
increase. Why this should be is not known. The curve corresponding to the highest 
capillary number appears to approach a lower bound of about Q. This result is reason- 
able by the following argument. When the Reynolds number is large, the parabolic 
velocity profile (4.4q) persists up to the tip ofthe meniscus, where there is a stagnation 
point. To be consistent with the zero velocity at the stagnation point, the profile 
must have a zero velocity along the centreline. The parabolic profile (4.4g) meets this 
condition when q is Q, which is in agreement with the numerical result. 

Film profiles at zero Reynolds number are shown in figure 5. I n  agreement with the 
findings of Coyne & Elrod (1970), the profiles become flat a t  a distance downstream 
which is on the order of one unit. At large Reynolds numbers, however, boundary- 
layer theory suggests that the distance to a flat profile will be proportional t o  the 
Reynolds number. I n  figure 6 film profiles are plotted for a few Reynolds numbers, 
the capillary number being 1000. Note that the 6-co-ordinate has been scaled with the 
Reynolds number. Plotted in this way, the profiles appear to approach a limit as the 
Reynolds number becomea large. To support this finding, a very approximate 
boundary-layer analysis was carried out. The velocity profile across the film was 
assumed to be parabolic, and the x-component of the momentum equation, reduced to 
standard boundary-layer form, was satisfied only in the mean across the film. The 
details will not be given here, as the method is straightforward and there are instances 
of its application (e.g. Wilkes & Nedderman 1962; Cerro & Scriven 1980; Stucheli & 
Ozisik 1976). The expression obtained for the film profile is 

- -_  E - 20(22- i)+&q(Z-i)--&ln- 2 - q  
rp 1 - q '  (5.3) 

where Z = 1 - h/f and q = ,/&. This approximate result is also plotted in figure 6, 
and it supports the numerical findings. 

I n  addition to the thickness ratio, the linear extrapolation of the pressure to the tip 
of the meniscus is also needed later. This was determined by plotting the element 
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FIGURE 6. Free-boundary profiles for c = 1000. -, r3 = 40; - - . ., 80; - - -, 160; - - - . - -, approximate result (5.3). 
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FIGURE 7.  Pressure at the meniscus at zero Reynolds number determined by 
an extrapolation of the constant upstream pressure gradient. 

C 

pressures against [/!for 
independent of y and fall on a straight line with a slope given by 

< 0. Away from the tip of the meniscus the pressures are 

g5 = 3(1 -q)/p. (5.4) 

The extrapolation of this straight line to = 0 gives the desired pressure, which is 
plotted in figure 7 as a function of the capillary number for a Reynolds number of 
zero. 

6. Completion of the outer solution 
The two boundary conditions found by matching, namely (4.5a, c ) ,  allow the outer 

solution to be completed. Written in terms of 8, instead of x (see (3.5)),  these boundary 
conditions are 

= 0, = hCos2e (8 = em), (B. la ,  b )  
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where 8, is the value of 8 a t  x = m. With the addition of the third boundary condition 
( 3 . 7 ) ,  the differential equation ( 3 . 6 )  for the pressure can now be solved. 

First ( 3 . 6 )  is integrated, and ( 3 . 7 )  is used to  determine the constant of integration: 

p)/32/2 = [& + $5'+ isin 281 ( 1  - $ A )  - &A sin 8 c0s3 8. 

0 = [in + $8, + &sin28,] (1 - $A)  - ah sin 8, C O S ~  8,. 

( 6 . 2 )  

( 6 . 3 )  

Boundary condition (6.1 a)  is now applied to  (6.2) : 

Equations ( 6 . 3 )  and (6.1 b )  can be solved simultaneously to yield h and 0,. 
An approximate solution for h and 8, is now derived which obviates a numerical 

solution. Using calculus, it is straightforward to  show that the first bracketed term in 
( 6 . 3 )  is greater than or equal to  an 'v 0.8 in the interval (0 < 8, < &r). Similarly, the 
coefficient of h on the far right of ( 6 . 3 )  cannot exceed 3 4 &  'v 0.08. Thus the first term 
in ( 6 . 3 )  dominates, and as a result h must be close to  $. Equation (6.1 b )  then gives an 
estimate for 8,: 

A N A" = $, ( 6 . 4 ~ )  

0, 0; = arccos (9q) t .  ( 6 . 4 b )  

These first approximations for h and 8, can be improved by linearizing ( 6 . 1  b )  
and ( 6 . 3 )  about A* and 0%. Specifically, the forms 

em = e:& + e;, ( 6 . 5 ~ )  

h = A* + A', ( 6 . 5 b )  

where 0; and A' are relatively small quantities, are substituted into (6.1 b )  and ( 6 . 3 ) ,  
and the products of the primed quantities are neglected. The corrections 8; and A' 
then follow as the solution of two linear equations. The result is 

A' = :8& tan 02, ( 6 . 6 ~ )  

( 6 . 6 b )  

The behaviour of the solution is most simply gleaned from ( 6 . 4 ) .  The approximate 
locatrion of the meniscus, for instance: follows from ( 6 . 4 b ) :  

m - [ 2 ( ' - 1 ) ]  t . 

As the capillary number increases a t  a Reynolds number of zero, q increases (figure 3 ) )  
and consequently m decreases; that  is, the meniscus is drawn towards the nip. How- 
ever, because q never exceeds 0.41, m cannot be less than 2.1, and so the meniscus 
never reaches the nip. 

According to the experimental observations of Pitts & Greiller (1961)) there is a 
region of recirculation just upstream of the meniscus on each side of the centreline, 
and a stagnation point on t,he centreline between the meniscus and the nip. Using 
(3.4u, b )  and ( 6 . 4 ~ )  the position of this stagnation point is found to be x = 4 6 .  Ac- 
cording to (6 .7) ,  the meniscus shares this position where q = 4 and hence, from figure 3, 
c = 1.0. Thus there are recirculation regions only when c < 1.0. 
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7. Concluding remarks 
A completely numerical solution to the flow problem could be constructed. This is 

difficult, however, when 6 is small, because the element packing must be dense near 
the meniscus, and the position of the meniscus varies widely with changes in c and 6. 
It is far easier in this case to  confine the numerical calculations to the vicinity of the 
meniscus. When the gap between the cylinders is comparable to  their radius, however, 
a completely numerical solution would probably be the best alternative. 

As has been discussed, the boundary condition setting the pressure in the outer 
region to  zero a t  the meniscus ( 4 . 5 ~ )  results because the pressure has been scaled with 
viscous forces in both the inner and outer regions. When the capillary number is small, 
however, the pressure drop across the meniscus is important and the scale factor for 
the pressure is u/Ho.  Boundary condition (4 .5a)  would not be accurate under these 
conditions. The following estimates show that ( 4 . 5 ~ )  is, however, valid over a large 
range of capillary number. 

The pressure drop across the meniscus is given by p* (figure 7) .  Expressed in terms 
of the outer variable p ,  this pressure drop is 

p = 6c0s28,p*. (7.1) 

p = S($qp*). (7.2) 

Using the approximate result (6.4b) for Om, (7.1) becomes 

Sincep is of order unity, boundary conditions ( 4 . 5 ~ )  will be valid when the right-hand 
side of (7.2) is much less than unity. The results for q andp* (figures 3 and 7) show that 
the product p*q is less than 5.4 when the capillary number is greater than 0.015. 
Thus, for the right-hand side of (7.2) to be much less than unity for this range of 
capillary number, it is sufficient that S is much less than unity, and this is already the 
case. 

When the capillary number is too small, moreover, the flow between the nip and the 
meniscus cannot, strictly speaking, be described by the lubrication approximation. 
The position of the meniscus depends on the capillary number through p, and (6.7) 
and (5.1) show that m+co as c+O. The outer solution is expected t o  be valid, how- 
ever, only when m < 6-4, which, using (6.7), is equivalent to  

<.&I. (7 .3)  

When this condition is violated, the meniscus forms too far from the nip for the 
cylinder surfaces to  be considered nearly parallel everywhere upstream of the meniscus. 

The exact form of the boundary condition on the pressure gradient depends upon 
the geometry of the problem being considered. I n  the case of the simple journal 
bearing studied by Taylor (1963)) the boundary condition would be 

Pz = 6(1- 2a)/f2, (7.4) 

rather than (4.6b). The parameter q would be determined as part of the inner solution 
for this particular problem. It would be unlikely to differ much from the value of its 
counterpart in the present problem (figure 3 ) .  

Taylor (1963), proceeding largely intuitively, arrived at  the correct form for the 
boundary conditions a t  the meniscus and proposed essentially the correct local 
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analysis for the neighbourhood of the meniscus. The application of the method of 
matched asymptotic expansions clarifies, generalizes and justifies Taylor's results and 
ideas. The procedure by which boundary conditions can be obtained for any problem 
in this class is now clear. 
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